Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.065
Filter
1.
Am J Bot ; 111(4): e16309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584339

ABSTRACT

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Subject(s)
Flowers , Hybridization, Genetic , Opuntia , Pollination , Reproductive Isolation , Seeds , Self-Incompatibility in Flowering Plants , Sympatry , Self-Incompatibility in Flowering Plants/physiology , Flowers/physiology , Seeds/physiology , Opuntia/physiology , Reproduction , Pollen/physiology , Species Specificity , Apomixis/physiology
2.
PLoS Negl Trop Dis ; 18(4): e0011472, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620029

ABSTRACT

BACKGROUND: Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS: Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE: Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.


Subject(s)
Hybridization, Genetic , Schistosoma haematobium , Schistosomiasis haematobia , Animals , Nigeria/epidemiology , Humans , Schistosoma haematobium/genetics , Schistosoma haematobium/isolation & purification , Schistosoma haematobium/classification , Schistosomiasis haematobia/parasitology , Schistosomiasis haematobia/epidemiology , Male , Female , Genotype , DNA, Helminth/genetics , Genome, Mitochondrial , Adult
3.
Nature ; 628(8009): 811-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632397

ABSTRACT

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Subject(s)
Butterflies , Gene Flow , Genetic Introgression , Genetic Speciation , Hybridization, Genetic , Quantitative Trait Loci , Sympatry , Animals , Butterflies/genetics , Butterflies/classification , Quantitative Trait Loci/genetics , Male , Female , Sympatry/genetics , Reproductive Isolation , Mating Preference, Animal , Species Specificity , Wings, Animal/anatomy & histology , Selection, Genetic , Phenotype , Genome, Insect/genetics , Pigmentation/genetics
4.
Am J Bot ; 111(4): e16317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634444

ABSTRACT

PREMISE: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. METHODS: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. RESULTS: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization-induced changes in leaf traits greatly affected the improved performance in elevated CO2. CONCLUSIONS: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen-use efficiency compared with parents. The results suggest that hybrid crops should be well-suited for future conditions, but hybrid weeds may also be more competitive.


Subject(s)
Arabidopsis , Atmosphere , Carbon Dioxide , Hybridization, Genetic , Nitrogen , Plant Leaves , Carbon Dioxide/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Nitrogen/metabolism , Atmosphere/chemistry , Photosynthesis , Hybrid Vigor
5.
Mol Biol Rep ; 51(1): 537, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642174

ABSTRACT

BACKGROUND: Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS: In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS: Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION: These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Hybridization, Genetic , Hybrid Vigor/genetics
6.
Genet Sel Evol ; 56(1): 24, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566006

ABSTRACT

BACKGROUND: Gene flow is crucial for enhancing economic traits of livestock. In China, breeders have used hybridization strategies for decades to improve livestock performance. Here, we performed whole-genome sequencing of a native Chinese Lijiang pig (LJP) breed. By integrating previously published data, we explored the genetic structure and introgression of genetic components from commercial European pigs (EP) into the LJP, and examined the impact of this introgression on phenotypic traits. RESULTS: Our analysis revealed significant introgression of EP breeds into the LJP and other domestic pig breeds in China. Using a haplotype-based approach, we quantified introgression levels and compared EP to LJP and other Chinese domestic pigs. The results show that EP introgression is widely prevalent in Chinese domestic pigs, although there are significant differences between breeds. We propose that LJP could potentially act as a mediator for the transmission of EP haplotypes. We also examined the correlation between EP introgression and the number of thoracic vertebrae in LJP and identified VRTN and STUM as candidate genes for this trait. CONCLUSIONS: Our study provides evidence of introgressed European haplotypes in the LJP breed and describes the potential role of EP introgression on phenotypic changes of this indigenous breed.


Subject(s)
Genetic Introgression , Sus scrofa , Swine/genetics , Animals , Sus scrofa/genetics , Phenotype , Haplotypes , Hybridization, Genetic
7.
Sci Rep ; 14(1): 8540, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609462

ABSTRACT

This study investigated whether plasma biomarkers of residual feed intake (RFI), identified under ad libitum feeding conditions in beef cattle, remained consistent during feed restriction. Sixty Charolais crossbred young bulls were divided into two groups for a crossover study. Group A was initially fed ad libitum (first test) and then restricted (second test) on the same diet, while Group B experienced the opposite sequence. Blood samples were collected from the 12 most divergent RFI animals in each group at the end of the first test and again after the second test. 12 plasma variables consistently increased, while three consistently decreased during feed restriction (FDR < 0.05). Only two metabolites, α-aminoadipic acid for Group A and 5-aminovaleric acid for Group B, were associated with RFI independent of feed intake level (FDR < 0.05), demonstrating moderate-to-high repeatability across feeding levels (intraclass correlation coefficient ≥ 0.59). Notably, both metabolites belong to the same metabolic pathway: lysine degradation. These metabolites consistently correlated with RFI, irrespective of fluctuations in feed intake, indicating a connection to individual metabolic processes influencing feed efficiency. These findings suggest that a portion of RFI phenotypic variance is inherent to an individual's metabolic efficiency beyond variations in feed intake.


Subject(s)
2-Aminoadipic Acid , Eating , Animals , Cattle , Male , Cross-Over Studies , Biomarkers , Hybridization, Genetic
8.
Nature ; 628(8009): 723-724, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632416
9.
Mol Ecol ; 33(9): e17333, 2024 May.
Article in English | MEDLINE | ID: mdl-38597343

ABSTRACT

Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.


Subject(s)
Hybridization, Genetic , Animals , Temperature , Climate Change , Stress, Physiological/genetics , Gene Expression/genetics , Phenotype , Mytilus/genetics , Transcriptome
10.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429502

ABSTRACT

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Subject(s)
Malus , Pyrus , Rosaceae , Humans , Malus/genetics , Pyrus/genetics , Pyrus/metabolism , Plant Breeding , Rosaceae/genetics , Hybridization, Genetic
11.
Nature ; 628(8009): 804-810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538783

ABSTRACT

Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.


Subject(s)
Genome, Plant , Polyploidy , Saccharum , Saccharum/genetics , Genome, Plant/genetics , Plant Breeding , Haplotypes/genetics , Chromosomes, Plant/genetics , Hybridization, Genetic/genetics
12.
Mol Ecol ; 33(8): e17317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488670

ABSTRACT

Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.


Subject(s)
Genetics, Population , Transcriptome , Transcriptome/genetics , Genome-Wide Association Study , Genome , Genomics , Gene Flow , Genetic Speciation , Hybridization, Genetic , Reproductive Isolation
13.
Mol Ecol ; 33(8): e17315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501394

ABSTRACT

Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.


Subject(s)
Biological Evolution , Hybridization, Genetic , Animals , Polyploidy , Plants
14.
Nat Ecol Evol ; 8(4): 761-776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472432

ABSTRACT

Shared genetic polymorphisms between populations and species can be ascribed to ancestral variation or to more recent gene flow. Here, we mapped shared polymorphisms in Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus, which diverged 4-6 million years ago. We used a dense map of single-nucleotide diagnostic markers (mean distance 15.6 base pairs) in 1,673 sequenced S. cerevisiae isolates to catalogue 3,852 sequence blocks (≥5 consecutive markers) introgressed from S. paradoxus, with most being recent and clade-specific. The highly diverged wild Chinese S. cerevisiae lineages were depleted of introgressed blocks but retained an excess of individual ancestral polymorphisms derived from incomplete lineage sorting, perhaps due to less dramatic population bottlenecks. In the non-Chinese S. cerevisiae lineages, we inferred major hybridization events and detected cases of overlapping introgressed blocks across distinct clades due to either shared histories or convergent evolution. We experimentally engineered, in otherwise isogenic backgrounds, the introgressed PAD1-FDC1 gene pair that independently arose in two S. cerevisiae clades and revealed that it increases resistance against diverse antifungal drugs. Overall, our study retraces the histories of divergence and secondary contacts across S. cerevisiae and S. paradoxus populations and unveils a functional outcome.


Subject(s)
Polymorphism, Genetic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Hybridization, Genetic
15.
Sci Rep ; 14(1): 7333, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538706

ABSTRACT

Application of machine learning in plant breeding is a recent concept, that has to be optimized for precise utilization in the breeding program of high yielding crop plants. Identification and efficient utilization of heterotic grouping pattern aided with machine learning approaches is of utmost importance in hybrid cultivar breeding as it can save time and resources required to breed a new plant hybrid/variety. In the present study, 109 genotypes of sunflower were investigated at morphological, biochemical (SDS-PAGE) and molecular levels (through micro-satellites (SSR) markers) for heterotic grouping. All the three datasets were combined, scaled, and subjected to unsupervised machine learning algorithms, i.e., Hierarchical clustering, K-means clustering and hybrid clustering algorithm (hierarchical + K-means) for assessment of efficiency and resolution power of these algorithms in practical plant breeding for heterotic grouping identification. Following the application of machine learning unsupervised clustering approach, two major groups were identified in the studied sunflower germplasm, and further classification revealed six smaller classes in each major group through hierarchical and hybrid clustering approach. Due to high resolution, obtained in hierarchical clustering, classification achieved through this algorithm was further used for selection of potential parents. One genotype from each smaller group was selected based on the maximum seed yield potential and hybridized in a line × tester mating design producing 36 F1 cross combinations. These F1s along with their parents were studied in open field conditions for validating the efficacy of identified heterotic groups in sunflowers genetic material under study. Data for 11 agronomic and qualitative traits were recorded. These 36 F1 combinations were tested for their combining ability (General/Specific), heterosis, genotypic and phenotypic correlation and path analysis. Results suggested that F1 hybrids performed better for all the traits under investigation than their respective parents. Findings of the study validated the use of machine learning approaches in practical plant breeding; however, more accurate and robust clustering algorithms need to be developed to handle the data noisiness of open field experiments.


Subject(s)
Asteraceae , Helianthus , Hybrid Vigor , Hybridization, Genetic , Helianthus/genetics , Genotype , Plant Breeding , Machine Learning
16.
Front Biosci (Elite Ed) ; 16(1): 2, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38538522

ABSTRACT

Wheat (Triticum spp and, particularly, T. aestivum L.) is an essential cereal with increased human and animal nutritional demand. Therefore, there is a need to enhance wheat yield and genetic gain using modern breeding technologies alongside proven methods to achieve the necessary increases in productivity. These modern technologies will allow breeders to develop improved wheat cultivars more quickly and efficiently. This review aims to highlight the emerging technological trends used worldwide in wheat breeding, with a focus on enhancing wheat yield. The key technologies for introducing variation (hybridization among the species, synthetic wheat, and hybridization; genetically modified wheat; transgenic and gene-edited), inbreeding (double haploid (DH) and speed breeding (SB)), selection and evaluation (marker-assisted selection (MAS), genomic selection (GS), and machine learning (ML)) and hybrid wheat are discussed to highlight the current opportunities in wheat breeding and for the development of future wheat cultivars.


Subject(s)
Plant Breeding , Triticum , Humans , Triticum/genetics , Plant Breeding/methods , Hybridization, Genetic
17.
Glob Chang Biol ; 30(4): e17262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546370

ABSTRACT

Current global climate change is expected to affect biodiversity negatively at all scales leading to mass biodiversity loss. Many studies have shown that the distribution of allele frequencies across a species' range is often influenced by specific genetic loci associated with local environmental variables. This association reflects local adaptation and allele changes at those loci could thereby contribute to the evolutionary response to climate change. However, predicting how species will adapt to climate change from this type of data alone remains challenging. In the present study, we combined exome capture sequences and environmental niche reconstruction, to test multiple methods for assessing local adaptation and climate resilience in two widely distributed conifers, Norway spruce and Siberian spruce. Both species are keystone species of the boreal forest and share a vast hybrid zone. We show that local adaptation in conifers can be detected through allele frequency variation, population-level ecological preferences, and historical niche movement. Moreover, we integrated genetic and ecological information into genetic offset predictive models to show that hybridization plays a central role in expanding the niche breadth of the two conifer species and may help both species to cope better with future changing climates. This joint genetic and ecological analysis also identified spruce populations that are at risk under current climate change.


Subject(s)
Picea , Resilience, Psychological , Tracheophyta , Trees , Taiga , Climate Change , Hybridization, Genetic , Cycadopsida , Picea/genetics
19.
Theor Appl Genet ; 137(3): 75, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453705

ABSTRACT

KEY MESSAGE: We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic groups selected for silage performances. Selection based on genomic predictions trained on a factorial design resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction experimentally and showed the benefit of updating it along generations.


Subject(s)
Hybridization, Genetic , Zea mays , Genomics/methods , Plant Breeding , Silage , Zea mays/genetics
20.
Proc Natl Acad Sci U S A ; 121(12): e2316008121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38466849

ABSTRACT

Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genus Clarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser's admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.


Subject(s)
Clarkia , Clarkia/genetics , Reproduction , Reproductive Isolation , Hybridization, Genetic , Genome , Gene Flow
SELECTION OF CITATIONS
SEARCH DETAIL
...